
1

COMPUTER GRAPHICS

Objective: To understand the concepts on basic Graphical Techniques, Raster Graphics,

Two Dimensional and Three-Dimensional Graphics.

Unit I

Introduction to Computer Graphics

Graphics is defined as any sketch or a drawing or a special network that pictorially represents some

meaningful information. Computer Graphics is used where a set of image needs to be manipulated

or the creation of the image in the form of pixels and is drawn on the computer.

Computer Graphics can be used in digital photography, film, entertainment, electronic gadgets and

all other core technologies which are required. It is a vast subject and area in the field of computer

science.

Computer Graphics can be used in UI design, rendering, geometric object, animation and many

more.In most area, computer graphics is an abbreviation of CG. There are several tools used for

implementation of Computer Graphics.

The basic is the <graphics.h> header file in Turbo-C, Unity for advanced and even OpenGL can be

used for it’s Implementation. It was invented in 1960 by great researchers Verne Hudson and

William Fetter from Boeing.

Computer Graphics refers to several things:
• The manipulation and the representation of the image or the data in a graphical

manner.

• Various technology required for the creation and manipulation.

• Digital synthesis and its manipulation.

https://www.geeksforgeeks.org/introduction-to-computer-graphics/geeksforgeeks.org/computer-graphics-2/

2

Applications

• Computer Graphics are used for aided design for engineering and architectural

system- These are used in electrical automobile, electro-mechanical, mechanical,

electronic devices. For example: gears and bolts.

• Computer Art – MS Paint.

• Presentation Graphics – It is used to summarize financial statistical scientific or

economic data. For example- Bar chart, Line chart.

• Entertainment- It is used in motion picture, music video, television gaming.

• Education and training- It is used to understand operations of complex system. It is

also used for specialized system such for framing for captains, pilots and so on.

• Visualization- To study trends and patterns.For example- Analyzing satellite photo

of earth.

What drives computer graphics?

• Movie Industry

• Leaders in quality and artistry

• Not slaves to conceptual purity

• Big budgets and tight schedules

• Reminder that there is more to

• CG than technology

3

Applications of Computer Graphics

Computer graphics deals with creation, manipulation and storage of different type of images and

objects.

Some of the applications of computer graphics are:

1 .Computer Art:

Using computer graphics, we can create fine and commercial art which include animation

packages, paint packages. These packages provide facilities for designing object shapes and

specifying object motion.Cartoon drawing, paintings, logo design can also be done.

2. Computer Aided Drawing:

Designing of buildings, automobile, aircraft is done with the help of computer aided drawing, this

helps in providing minute details to the drawing and producing more accurate and sharp drawings

with better specifications.

https://www.geeksforgeeks.org/computer-graphics-2/

4

3.Presentation Graphics:

For the preparation of reports or summarizing the financial, statistical, mathematical, scientific,

economic data for research reports, managerial reports, moreover creation of bar graphs, pie charts,

time chart, can be done using the tools present in computer graphics.

o Financial Reports

o Statistical Reports

o Mathematical Reports

o Scientific Reports

o Economic Data for research reports

o Managerial Reports

o Consumer Information Bulletins

o And other types of reports

4.Entertainment:

Computer graphics finds a major part of its utility in the movie industry and game industry. Used

for creating motion pictures, music video, television shows, cartoon animation films. In the game

industry where focus and interactivity are the key players, computer graphics helps in providing

such features in the efficient way.

5.Education:

Computer generated models are extremely useful for teaching huge number of concepts and

fundamentals in an easy to understand and learn manner. Using computer graphics many

educational models can be created through which more interest can be generated among the

students regarding the subject.

6.Training:

Specialized system for training like simulators can be used for training the candidates in a way that

can be grasped in a short span of time with better understanding. Creation of training modules

using computer graphics is simple and very useful.

5

7.Visualization:

Today the need of visualize things have increased drastically, the need of visualization can be seen

in many advance technologies, data visualization helps in finding insights of the data, to check and

study the behavior of processes around us we need appropriate visualization which can be achieved

through proper usage of computer graphics

8.Image Processing:

Various kinds of photographs or images require editing in order to be used in different places.

Processing of existing images into refined ones for better interpretation is one of the many

applications of computer graphics.

9.Machine Drawing:

Computer graphics is very frequently used for designing, modifying and creation of various parts

of machine and the whole machine itself, the main reason behind using computer graphics for this

purpose is the precision and clarity we get from such drawing is ultimate and extremely desired

for the safe manufacturing of machine using these drawings.

10.Graphical User Interface:

The use of pictures, images, icons, pop-up menus, graphical objects helps in creating a user-

friendly environment where working is easy and pleasant, using computer graphics we can create

such an atmosphere where everything can be automated and anyone can get the desired action

performed in an easy fashion.

These are some of the applications of computer graphics due to which it’s popularity has increased

to a huge extend and will keep on increasing with the progress in technology.

6

11.Use in Biology:

Molecular biologist can display a picture of molecules and gain insight into their structure with

the help of computer graphics.

12. Computer-Generated Maps:

Town planners and transportation engineers can use computer-generated maps which display data

useful to them in their planning work.

13. Computer Art:

 Computer Graphics are also used in the field of commercial arts. It is used to generate television

15. Printing Technology:

Computer Graphics is used for printing technology and textile design.

Example of Computer Graphics Packages:

1. LOGO

2. COREL DRAW

3. AUTO CAD

4. 3D STUDIO

5. CORE

6. GKS (Graphics Kernel System)

7. PHIGS

8. CAM (Computer Graphics Metafile)

9. CGI (Computer Graphics Interface)

7

Display System

Parts of Display Processor

1. Display File Memory

2. Display Processor

3. Display Generator

4. Display Console

Display Processor: It is interpreter or piece of hardware that converts display processor code into

pictures. It is one of the four main parts of the display processor.

Display File Memory: It is used for generation of the picture. It is used for identification of

graphic entities.

Display Controller:

1. It handles interrupt.

2. It maintains timings.

3. It is used for interpretation of instruction.

8

Display Generator:

1. It is used for the generation of character.

2. It is used for the generation of curves.

Display Console: It contains CRT, Light Pen, and Keyboard and deflection system.

The raster scan system is a combination of some processing units. It consists of the control

processing unit (CPU) and a particular processor called a display controller. Display Controller

controls the operation of the display device. It is also called a video controller.

Working: The video controller in the output circuitry generates the horizontal and vertical drive

signals so that the monitor can sweep. Its beam across the screen during raster scans.

As fig showing that 2 registers (X register and Y register) are used to store the coordinate of the

screen pixels. Assume that y values of the adjacent scan lines increased by 1 in an upward direction

starting from 0 at the bottom of the screen to ymax at the top and along each scan line the screen

9

pixel positions or x values are incremented by 1 from 0 at the leftmost position to xmax at the

rightmost position.

The origin is at the lowest left corner of the screen as in a standard Cartesian coordinate system.

At the start of a Refresh Cycle:

X register is set to 0 and y register is set to ymax. This (x, y') address is translated into a memory

address of frame buffer where the color value for this pixel position is stored.

The controller receives this color value (a binary no) from the frame buffer, breaks it up into three

parts and sends each element to a separate Digital-to-Analog Converter (DAC).

These voltages, in turn, controls the intensity of 3 e-beam that are focused at the (x, y) screen

position by the horizontal and vertical drive signals.

This process is repeated for each pixel along the top scan line, each time incrementing the X

register by Y.

As pixels on the first scan line are generated, the X register is incremented throughxmax.

Then x register is reset to 0, and y register is decremented by 1 to access the next scan line.

Pixel along each scan line is then processed, and the procedure is repeated for each successive scan

line units pixels on the last scan line (y=0) are generated.

10

For a display system employing a color look-up table frame buffer value is not directly used to

control the CRT beam intensity.

It is used as an index to find the three pixel-color value from the look-up table. This lookup

operation is done for each pixel on every display cycle.

As the time available to display or refresh a single pixel in the screen is too less, accessing the

frame buffer every time for reading each pixel intensity value would consume more time what is

allowed:

Multiple adjacent pixel values are fetched to the frame buffer in single access and stored in the

register.

After every allowable time gap, the one-pixel value is shifted out from the register to control the

warm intensity for that pixel.

The procedure is repeated with the next block of pixels, and so on, thus the whole group of pixels

will be processed.

The most commonly used display device is a video monitor. The operation of most video monitors

based on CRT (Cathode Ray Tube). The following display devices are used:

11

Video Display Devices:

1. Refresh Cathode Ray Tube

2. Random Scan and Raster Scan

3. Color CRT Monitors

4. Direct View Storage Tubes

5. Flat Panel Display

6. Lookup Table

Cathode Ray Tube (CRT):

CRT stands for Cathode Ray Tube. CRT is a technology used in traditional computer monitors

and televisions. The image on CRT display is created by firing electrons from the back of the tube

of phosphorus located towards the front of the screen.

Once the electron heats the phosphorus, they light up, and they are projected on a screen. The color

you view on the screen is produced by a blend of red, blue and green light.

12

Components of CRT:

Main Components of CRT are:

1. Electron Gun: Electron gun consisting of a series of elements, primarily a heating filament

(heater) and a cathode. The electron gun creates a source of electrons which are focused into a

narrow beam directed at the face of the CRT.

2. Control Electrode: It is used to turn the electron beam on and off.

3. Focusing system: It is used to create a clear picture by focusing the electrons into a narrow

beam.

4. Deflection Yoke: It is used to control the direction of the electron beam. It creates an electric

or magnetic field which will bend the electron beam as it passes through the area. In a conventional

CRT, the yoke is linked to a sweep or scan generator. The deflection yoke which is connected to

the sweep generator creates a fluctuating electric or magnetic potential.

5. Phosphorus-coated screen: The inside front surface of every CRT is coated with phosphors.

Phosphors glow when a high-energy electron beam hits them. Phosphorescence is the term used

to characterize the light given off by a phosphor after it has been exposed to an electron beam.

Random Scan Display:

Random Scan System uses an electron beam which operates like a pencil to create a line image on

the CRT screen. The picture is constructed out of a sequence of straight-line segments. Each line

segment is drawn on the screen by directing the beam to move from one point on the screen to the

next, where its x & y coordinates define each point. After drawing the picture. The system cycles

13

back to the first line and design all the lines of the image 30 to 60 time each second. The process

is shown in fig:

Random-scan monitors are also known as vector displays or stroke-writing displays or calligraphic

displays.

Advantages:

1. A CRT has the electron beam directed only to the parts of the screen where an image is to

be drawn.

2. Produce smooth line drawings.

3. High Resolution

Disadvantages:

1. Random-Scan monitors cannot display realistic shades scenes.

Raster Scan Display:

A Raster Scan Display is based on intensity control of pixels in the form of a rectangular box called

Raster on the screen. Information of on and off pixels is stored in refresh buffer or Frame buffer.

Televisions in our house are based on Raster Scan Method. The raster scan system can store

14

information of each pixel position, so it is suitable for realistic display of objects. Raster Scan

provides a refresh rate of 60 to 80 frames per second.

Frame Buffer is also known as Raster or bit map. In Frame Buffer the positions are called picture

elements or pixels. Beam refreshing is of two types. First is horizontal retracing and second is

vertical retracing. When the beam starts from the top left corner and reaches the bottom right scale,

it will again return to the top left side called at vertical retrace. Then it will again more horizontally

from top to bottom call as horizontal retracing shown in fig:

Types of Scanning or travelling of beam in Raster Scan

1. Interlaced Scanning

2. Non-Interlaced Scanning

In Interlaced scanning, each horizontal line of the screen is traced from top to bottom. Due to

which fading of display of object may occur. This problem can be solved by Non-Interlaced

scanning. In this first of all odd numbered lines are traced or visited by an electron beam, then in

the next circle, even number of lines are located.

For non-interlaced display refresh rate of 30 frames per second used. But it gives flickers. For

interlaced display refresh rate of 60 frames per second is used.

15

Advantages:

1. Realistic image

2. Million Different colors to be generated

3. Shadow Scenes are possible.

Disadvantages:

1. Low Resolution

2. Expensive

Differentiate between Random and Raster Scan Display:

Random Scan Raster Scan

1. It has high Resolution 1. Its resolution is low.

2. It is more expensive 2. It is less expensive

3. Any modification if needed is easy 3.Modification is tough

4. Solid pattern is tough to fill 4.Solid pattern is easy to fill

5. Refresh rate depends or resolution 5. Refresh rate does not depend on the

picture.

6. Only screen with view on an area is

displayed.

6. Whole screen is scanned.

7. Beam Penetration technology come

under it.

7. Shadow mark technology came

under this.

8. It does not use interlacing method. 8. It uses interlacing

16

9. It is restricted to line drawing

applications

9. It is suitable for realistic display.

Color CRT Monitors:

The CRT Monitor display by using a combination of phosphors. The phosphors are different colors. There are two

popular approaches for producing color displays with a CRT are:

1. Beam Penetration Method

2. Shadow-Mask Method

1. Beam Penetration Method:

The Beam-Penetration method has been used with random-scan monitors. In this method, the CRT

screen is coated with two layers of phosphor, red and green and the displayed color depends on

how far the electron beam penetrates the phosphor layers. This method produces four colors only,

red, green, orange and yellow. A beam of slow electrons excites the outer red layer only; hence

screen shows red color only. A beam of high-speed electrons excites the inner green layer. Thus

screen shows a green color.

17

Advantages:

1. Inexpensive

Disadvantages:

1. Only four colors are possible

2. Quality of pictures is not as good as with another method.

2. Shadow-Mask Method:

o Shadow Mask Method is commonly used in Raster-Scan System because they produce a

much wider range of colors than the beam-penetration method.

o It is used in the majority of color TV sets and monitors.

Construction: A shadow mask CRT has 3 phosphor color dots at each pixel position.

o One phosphor dot emits: red light

o Another emits: green light

o Third emits: blue light

This type of CRT has 3 electron guns, one for each color dot and a shadow mask grid just behind

the phosphor coated screen.

Shadow mask grid is pierced with small round holes in a triangular pattern.

Figure shows the delta-delta shadow mask method commonly used in color CRT system.

18

Working: Triad arrangement of red, green, and blue guns.

The deflection system of the CRT operates on all 3 electron beams simultaneously; the 3 electron

beams are deflected and focused as a group onto the shadow mask, which contains a sequence of

holes aligned with the phosphor- dot patterns.

19

When the three beams pass through a hole in the shadow mask, they activate a dotted triangle,

which occurs as a small color spot on the screen.

The phosphor dots in the triangles are organized so that each electron beam can activate only its

corresponding color dot when it passes through the shadow mask.

Inline arrangement: Another configuration for the 3 electron guns is an Inline arrangement in

which the 3

electron guns and the corresponding red-green-blue color dots on the screen, are aligned along one

scan line rather of in a triangular pattern.

This inline arrangement of electron guns in easier to keep in alignment and is commonly used in

high-resolution color CRT's.

Advantage:

1. Realistic image

2. Million different colors to be generated

3. Shadow scenes are possible

20

Disadvantage:

1. Relatively expensive compared with the monochrome CRT.

2. Relatively poor resolution

3. Convergence Problem

Direct View Storage Tubes:

DVST terminals also use the random scan approach to generate the image on the CRT screen. The

term "storage tube" refers to the ability of the screen to retain the image which has been projected

against it, thus avoiding the need to rewrite the image constantly.

Function of guns: Two guns are used in DVST

1. Primary guns: It is used to store the picture pattern.

2. Flood gun or Secondary gun: It is used to maintain picture display.

Advantage:

1. No refreshing is needed.

2. High Resolution

3. Cost is very less

21

Disadvantage:

1. It is not possible to erase the selected part of a picture.

2. It is not suitable for dynamic graphics applications.

3. If a part of picture is to modify, then time is consumed.

Flat Panel Display:

The Flat-Panel display refers to a class of video devices that have reduced volume, weight and

power requirement compare to CRT.

Example: Small T.V. monitor, calculator, pocket video games, laptop computers, an

advertisement board in elevator.

1. Emissive Display: The emissive displays are devices that convert electrical energy into light.

Examples are Plasma Panel, thin film electroluminescent display and LED (Light Emitting

Diodes).

2. Non-Emissive Display: The Non-Emissive displays use optical effects to convert sunlight or

light from some other source into graphics patterns. Examples are LCD (Liquid Crystal Device).

Plasma Panel Display:

Plasma-Panels are also called as Gas-Discharge Display. It consists of an array of small lights.

Lights are fluorescent in nature. The essential components of the plasma-panel display are:

22

1. Cathode: It consists of fine wires. It delivers negative voltage to gas cells. The voltage is

released along with the negative axis.

2. Anode: It also consists of line wires. It delivers positive voltage. The voltage is supplied

along positive axis.

3. Fluorescent cells: It consists of small pockets of gas liquids when the voltage is applied to

this liquid (neon gas) it emits light.

4. Glass Plates: These plates act as capacitors. The voltage will be applied, the cell will glow

continuously.

The gas will slow when there is a significant voltage difference between horizontal and vertical

wires. The voltage level is kept between 90 volts to 120 volts. Plasma level does not require

refreshing. Erasing is done by reducing the voltage to 90 volts.

Each cell of plasma has two states, so cell is said to be stable. Displayable point in plasma panel

is made by the crossing of the horizontal and vertical grid. The resolution of the plasma panel can

be up to 512 * 512 pixels.

Figure shows the state of cell in plasma panel display:

23

Advantage:

1. High Resolution

2. Large screen size is also possible.

3. Less Volume

4. Less weight

5. Flicker Free Display

Disadvantage:

1. Poor Resolution

2. Wiring requirement anode and the cathode is complex.

3. Its addressing is also complex.

LED (Light Emitting Diode):

In an LED, a matrix of diodes is organized to form the pixel positions in the display and picture

definition is stored in a refresh buffer. Data is read from the refresh buffer and converted to voltage

levels that are applied to the diodes to produce the light pattern in the display.

LCD (Liquid Crystal Display):

Liquid Crystal Displays are the devices that produce a picture by passing polarized light from the

surroundings or from an internal light source through a liquid-crystal material that transmits the

light.

LCD uses the liquid-crystal material between two glass plates; each plate is the right angle to each

other between plates liquid is filled. One glass plate consists of rows of conductors arranged in

vertical direction. Another glass plate is consisting of a row of conductors arranged in horizontal

direction. The pixel position is determined by the intersection of the vertical & horizontal

conductor. This position is an active part of the screen.

24

Liquid crystal display is temperature dependent. It is between zero to seventy degree Celsius. It is

flat and requires very little power to operate.

Advantage:

1. Low power consumption.

2. Small Size

3. Low Cost

Disadvantage:

1. LCDs are temperature-dependent (0-70°C)

2. LCDs do not emit light; as a result, the image has very little contrast.

3. LCDs have no color capability.

4. The resolution is not as good as that of a CRT.

25

Look-Up Table:

Image representation is essentially the description of pixel colors. There are three primary colors:

R (red), G (green) and B (blue). Each primary color can take on intensity levels produces a variety

of colors. Using direct coding, we may allocate 3 bits for each pixel, with one bit for each primary

color. The 3-bit representation allows each primary to vary independently between two intensity

levels: 0 (off) or 1 (on). Hence each pixel can take on one of the eight colors.

Bit 1:r Bit 2:g Bit 3:b Color name

0 0 0 Black

0 0 1 Blue

0 1 0 Green

0 1 1 Cyan

1 0 0 Red

1 0 1 Magenta

1 1 0 Yellow

1 1 1 White

A widely accepted industry standard uses 3 bytes, or 24 bytes, per pixel, with one byte for each primary color. The

way, we allow each primary color to have 256 different intensity levels. Thus a pixel can take on

a color from 256 x 256 x 256 or 16.7 million possible choices. The 24-bit format is commonly

referred to as the actual color representation.

26

Lookup Table approach reduces the storage requirement. In this approach pixel values do not code

colors directly. Alternatively, they are addresses or indices into a table of color values. The color

of a particular pixel is determined by the color value in the table entry that the value of the pixel

references. Figure shows a look-up table with 256 entries. The entries have addresses 0 through 255. Each

entry contains a 24-bit RGB color value. Pixel values are now 1-byte. The color of a pixel whose value is i, where 0

<i<255, is persistence by the color value in the table entry whose address is i. It reduces the storage requirement of a

1000 x 1000 image to one million bytes plus 768 bytes for the color values in the look-up table.

Input Devices

The Input Devices are the hardware that is used to transfer transfers input to the computer. The

data can be in the form of text, graphics, sound, and text. Output device display data from the

memory of the computer. Output can be text, numeric data, line, polygon, and other objects.

27

Keyboard:

The most commonly used input device is a keyboard. The data is entered by pressing the set of

keys. All keys are labeled. A keyboard with 101 keys is called a QWERTY keyboard.

The keyboard has alphabetic as well as numeric keys. Some special keys are also available.

1. Numeric Keys: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

2. Alphabetic keys: a to z (lower case), A to Z (upper case)

3. Special Control keys: Ctrl, Shift, Alt

4. Special Symbol Keys: ; , " ? @ ~ ? :

5. Cursor Control Keys: ↑ → ← ↓

6. Function Keys: F1 F2 F3....F9.

7. Numeric Keyboard: It is on the right-hand side of the keyboard and used for fast entry of

numeric data.

28

Functions of Keyboard:

1. Alphanumeric Keyboards are used in CAD. (Computer Aided Drafting)

2. Keyboards are available with special features line screen co-ordinates entry, Menu

selection or graphics functions, etc.

3. Special purpose keyboards are available having buttons, dials, and switches. Dials are used

to enter scalar values. Dials also enter real numbers. Buttons and switches are used to enter

predefined function values.

Advantage:

1. Suitable for entering numeric data.

2. Function keys are a fast and effective method of using commands, with fewer errors.

Disadvantage:

1. Keyboard is not suitable for graphics input.

Mouse:

A Mouse is a pointing device and used to position the pointer on the screen. It is a small palm size

box. There are two or three depression switches on the top. The movement of the mouse along the

x-axis helps in the horizontal movement of the cursor and the movement along the y-axis helps in

the vertical movement of the cursor on the screen. The mouse cannot be used to enter text.

Therefore, they are used in conjunction with a keyboard.

29

Advantage:

1. Easy to use

2. Not very expensive

Trackball

It is a pointing device. It is similar to a mouse. This is mainly used in notebook or laptop computer,

instead of a mouse. This is a ball which is half inserted, and by changing fingers on the ball, the

pointer can be moved.

Advantage:

1. Trackball is stationary, so it does not require much space to use it.

2. Compact Size

30

Spaceball:

It is similar to trackball, but it can move in six directions where trackball can move in two

directions only. The movement is recorded by the strain gauge. Strain gauge is applied with

pressure. It can be pushed and pulled in various directions. The ball has a diameter around 7.5 cm.

The ball is mounted in the base using rollers. One-third of the ball is an inside box, the rest is

outside.

Applications:

1. It is used for three-dimensional positioning of the object.

2. It is used to select various functions in the field of virtual reality.

3. It is applicable in CAD applications.

4. Animation is also done using spaceball.

5. It is used in the area of simulation and modeling.

Joystick:

A Joystick is also a pointing device which is used to change cursor position on a monitor screen. Joystick is a stick

having a spherical ball as its both lower and upper ends as shown in fig. The lower spherical ball moves in a socket.

The joystick can be changed in all four directions. The function of a joystick is similar to that of the mouse. It is mainly

used in Computer Aided Designing (CAD) and playing computer games.

Light Pen

31

Light Pen (similar to the pen) is a pointing device which is used to select a displayed menu item

or draw pictures on the monitor screen. It consists of a photocell and an optical system placed in a

small tube. When its tip is moved over the monitor screen, and pen button is pressed, its photocell

sensing element detects the screen location and sends the corresponding signals to the CPU.

Uses:
1. Light Pens can be used as input coordinate positions by providing necessary

arrangements.

2. If background color or intensity, a light pen can be used as a locator.

3. It is used as a standard pick device with many graphics system.

4. It can be used as stroke input devices.

5. It can be used as valuators

Digitizers:

The digitizer is an operator input device, which contains a large, smooth board (the appearance is

similar to the mechanical drawing board) & an electronic tracking device, which can be changed

over the surface to follow existing lines. The electronic tracking device contains a switch for the

user to record the desire x & y coordinate positions. The coordinates can be entered into the

computer memory or stored or an off-line storage medium such as magnetic tape.

32

Advantages:

1. Drawing can easily be changed.

2. It provides the capability of interactive graphics.

Disadvantages:

1. Costly

2. Suitable only for applications which required high-resolution graphics.

Touch Panels:

Touch Panels is a type of display screen that has a touch-sensitive transparent panel covering the

screen. A touch screen registers input when a finger or other object comes in contact with the

screen.

When the wave signals are interrupted by some contact with the screen, that located is recorded.

Touch screens have long been used in military applications.

Voice Systems (Voice Recognition):

Voice Recognition is one of the newest, most complex input techniques used to interact with the

computer. The user inputs data by speaking into a microphone. The simplest form of voice

recognition is a one-word command spoken by one person. Each command is isolated with pauses

between the words.

33

Voice Recognition is used in some graphics workstations as input devices to accept voice

commands. The voice-system input can be used to initiate graphics operations or to enter data.

These systems operate by matching an input against a predefined dictionary of words and phrases.

Advantage:

1. More efficient device.

2. Easy to use

3. Unauthorized speakers can be identified

Disadvantages:

1. Very limited vocabulary

2. Voice of different operators can't be distinguished.

Image Scanner

It is an input device. The data or text is written on paper. The paper is feeded to scanner. The paper

written information is converted into electronic format; this format is stored in the computer. The

input documents can contain text, handwritten material, picture extra.

By storing the document in a computer document became safe for longer period of time. The

document will be permanently stored for the future. We can change the document when we need.

The document can be printed when needed.

Scanning can be of the black and white or colored picture. On stored picture 2D or 3D rotations,

scaling and other operations can be applied.

Types of image Scanner:

1. Flat Bed Scanner: It resembles a photocopy machine. It has a glass top on its top. Glass top in

further covered using a lid. The document to be scanned is kept on glass plate. The light is passed

underneath side of glass plate. The light is moved left to right. The scanning is done the line by

line. The process is repeated until the complete line is scanned. Within 20-25 seconds a document

of 4" * 6" can be scanned.

34

2. Hand Held Scanner: It has a number of LED's (Light Emitting Diodes) the LED's are arranged

in the small case. It is called a Hand held Scanner because it can be kept in hand which performs

scanning. For scanning the scanner is moved over document from the top towards the bottom. Its

light is on, while we move it on document. It is dragged very slowly over document. If dragging

of the scanner over the document is not proper, the conversion will not correct.

35

Output Devices

It is an electromechanical device, which accepts data from a computer and translates them into

form understand by users.

Following are Output Devices:

1. Printers

2. Plotters

Printers:

Printer is the most important output device, which is used to print data on paper.

Types of Printers: There are many types of printers which are classified on various criteria as

shown in fig:

https://www.javatpoint.com/computer-graphics-output-devices#printers
https://www.javatpoint.com/computer-graphics-plotters

36

1. Impact Printers: The printers that print the characters by striking against the ribbon and onto

the papers are known as Impact Printers.

These Printers are of two types:

1. Character Printers

2. Line Printers

2. Non-Impact Printers: The printers that print the characters without striking against the ribbon

and onto the papers are called Non-Impact Printers. These printers print a complete page at a time,

therefore, also known as Page Printers.

Page Printers are of two types:

1. Laser Printers

2. Inkjet Printers

37

Dot Matrix Printers:

Dot matrix has printed in the form of dots. A printer has a head which contains nine pins. The nine

pins are arranged one below other. Each pin can be activated independently. All or only the same

needles are activated at a time. When needless is not activated, and then the tip of needle stay in

the head. When pin work, it comes out of the print head. In nine pin printer, pins are arranged in 5

* 7 matrixes.

Advantage:

1. Dot Matrix Printers prints output as dots, so it can print any shape of the character. This

allows the printer to print special character, charts, graphs, etc.

2. Dot Matrix Printers come under the category of impact printers. The printing is done when

the hammer pin strikes the inked ribbon. The impressions are printed on paper. By placing

multiple copies of carbon, multiple copies of output can be produced.

3. It is suitable for printing of invoices of companies.

Daisy Wheel Printers:

Head is lying on a wheel and Pins corresponding to characters are like petals of Daisy, that's why

called Daisy wheel printer.

38

Advantage:

1. More reliable than DMPs

2. Better Quality

Disadvantage:

1. Slower than DMPs

Drum Printers:

These are line printers, which prints one line at a time. It consists of a drum. The shape of the drum

is cylindrical. The drum is solid and has characters embossed on it in the form of vertical bands.

The characters are in circular form. Each band consists of some characters. Each line on drum

consists of 132 characters. Because there are 96 lines so total characters are (132 * 95) = 12, 672.

Drum contains a number of hammers also.

Chain Printers:

These are called as line printers. These are used to print one line at a line. Basically, chain consists

of links. Each link contains one character. Printers can follow any character set style, i.e., 48, 64

or 96 characters. Printer consists of a number of hammers also.

39

Advantages:

1. Chain or Band if damaged can be changed easily.

2. It allows printing of different form.

3. Different Scripts can be printed using this printer.

Disadvantages:

1. It cannot print charts and graphs.

2. It cannot print characters of any shape.

3. Chain Printers is impact printer, hammer strikes so it is noisy.

Non-Impact Printers:

Inkjet Printers:

These printers use a special link called electrostatic ink. The printer head has a special nozzle.

Nozzle drops ink on paper. Head contains up to 64 nozzles. The ink dropped is deflected by the

electrostatic plate. The plate is fixed outside the nozzle. The deflected ink settles on paper.

Advantages:
1. These produce high quality of output as compared to the dot matrix.

2. A high-quality output can be produced using 64 nozzles printed.

3. Inkjet can print characters in a variety of shapes.

40

4. Inkjet can print special characters.

5. The printer can print graphs and charts.

Disadvantages:

1. Inkjet Printers are slower than dot matrix printers.

2. The cost of inkjet is more than a dot matrix printer.

Laser Printers:

These are non-impact page printers. They use laser lights to produces the dots needed to form the

characters to be printed on a page & hence the name laser printers.

The output is generated in the following steps:

Step1: The bits of data sent by processing unit act as triggers to turn the laser beam on & off.

Step2: The output device has a drum which is cleared & is given a positive electric charge. To

print a page the modulated laser beam passing from the laser scans back & forth the surface of the

drum. The positive electric charge on the drum is stored on just those parts of the drum surface

which are exposed to the laser beam create the difference in electric which charges on the exposed

drum surface.

41

Step3: The laser exposed parts of the drum attract an ink powder known as toner.

Step4: The attracted ink powder is transferred to paper.

Step5: The ink particles are permanently fixed to the paper by using either heat or pressure

technique.

Step6: The drum rotates back to the cleaner where a rubber blade cleans off the excess ink &

prepares the drum to print the next page.

Plotters

Plotters are a special type of output device. It is suitable for applications:

1. Architectural plan of the building.

2. CAD applications like the design of mechanical components of aircraft.

3. Many engineering applications.

Advantage:

1. It can produce high-quality output on large sheets.

42

2. It is used to provide the high precision drawing.

3. It can produce graphics of various sizes.

4. The speed of producing output is high.

Drum Plotter:

It consists of a drum. Paper on which design is made is kept on the drum. The drum can rotate in

both directions. Plotters comprised of one or more pen and penholders. The holders are mounted

perpendicular to drum surface. The pens are kept in the holder, which can move left to the right as

well as right to the left. The graph plotting program controls the movement of pen and drum.

Flatbed Plotter:

It is used to draw complex design and graphs, charts. The Flatbed plotter can be kept over the

table. The plotter consists of pen and holder. The pen can draw characters of various sizes. There

can be one or more pens and pen holding mechanism. Each pen has ink of different color. Different

colors help to produce multicolor design of document. The area of plotting is also variable. It can

vary A4 to 21'*52'.

43

It is used to draw

1. Cars

2. Ships

3. Airplanes

4. Shoe and dress designing

5. Road and highway design

Graphics Software:

There are two types of Graphics Software.

1. General Purpose Packages: Basic Functions in a general package include those for generating

picture components (straight lines, polygons, circles and other figures), setting color and intensity

values, selecting views, and applying transformations.

Example of general purpose package is the GL (Graphics Library), GKS, PHIGS, PHIGS+ etc.

2. Special Purpose Packages: These packages are designed for non programmers, so that these

users can use the graphics packages, without knowing the inner details.

44

Example of special purpose package is

1. Painting programs

2. Package used for business purpose

3. Package used for medical systems.

4. CAD packages

Graphics Software There are two general categories of graphics software

 General programming packages:

 Provides extensive set of graphics functions for high level languages (FORTRAN, C etc).

 Basic functions include those for generating picture components (straight lines, polygons,

circles, and other figures), setting color and intensity values, selecting views, and applying

transformations.

 Example: GL(Graphics Library)

 Special-purpose application packages:

 Designed for nonprogrammers, so that users can generate displays without worrying about how

graphics operations work.

 The interface to the graphics routines in such packages allows users to communicate with the

programs in their own terms.

 Example: artist's painting programs and various business, medical, and CAD systems. Software

standards Primary goal of standardized graphics software is portability. When packages are

designed with standard graphics functions, software can he moved easily from one hardware

system to another and used in different implementations and applications. International and

national standards planning

organizations in many countries have cooperated in an effort to develop a generally accepted

standard for computer graphics. After considerable effort, this work led to following standards:

45

 GKS (Graphical Kernel System): This system was adopted as the first graphics software

standard by the International Standards Organization (ISO) and American National Standards

Institute (ANSI). Although GKS was originally designed as a two-dimensional graphics package,

a threedimensional GKS extension was subsequently developed.

 PHIGS (Programmer’s Hierarchical Interactive Graphics Standard): Extension to GKS,

Increased Capabilities for object modeling, color specifications, surface rendering and picture

manipulations are provided. Subsequently, an extension of PHIGS, called PHIGS+, was developed

to provide three-dimensional surface-shading capabilities not available in PHIGS. Although

PHIGS presents a specification for basic graphics functions, it does not provide a standard

methodology for a graphics interface to output devices (i.e. still machine dependent). Nor does it

specify methods for storing and transmitting pictures. Separate standards have been developed for

these areas:

 CGI (Computer Graphics interface): Standardization for device interface

 CGM (Computer Graphics Metafile): Standards for archiving and transporting pictures

46

UNIT II

Output Primitives:

Output primitives are the geometric structures such as straight-line segments (pixel array) and

polygon color areas, used to describe the shapes and colors of the objects. Points and straight-line

segments are the simplest geometric components of pictures. Additional output primitive includes:

circles and other conic sections, quadric surfaces, spline curves and surfaces, polygon color areas

and character strings. Here, we discuss picture generation algorithm by examining device-level

algorithms for displaying two-dimensional output primitives, with emphasis on scan-conversion

methods for raster graphics system.

Points and Lines

 Point plotting is done in CRT monitor by turning on the electron beam to illuminate at the screen

phosphor at the selected location.

o Random-scan systems: stores point plotting instructions in the display list and coordinate values

in these instructions are converted into deflection voltages that position the electron beam at

selected location.

o B/W raster system: Within frame buffer, bit value is set to 1 for specified screen position.

Electron beam then sweeps across each horizontal scan line, it emits a burst of electrons (plots a

point) whenever value of 1 is encountered in the frame buffer.

o RGB raster system: Frame buffer is loaded with the color codes for the intensities that are to be

displayed at the screen pixel positions.

 Line drawing is accomplished by calculating intermediate positions along the line path between

two specified endpoint positions. An output device is then directed to fill in these positions between

the endpoints.

47

 o For analog devices (vector-pen plotter and random-scan display), a straight line can be drawn

smoothly between two points. [Reason: linearly varying horizontal and vertical deflection voltages

are generated that are proportional to the required changes in the x and y directions]

o Digital devices display a straight-line segment by plotting discrete points between two end-

points. Discrete integer coordinates are calculated from the equation of the line. Since rounding of

coordinate values occur [viz. (4.48, 48.51) would be converted to (4, 49)], line is displayed with

stairstep appearance.

Scan Converting a Straight Line

A straight line may be defined by two endpoints & an equation. In fig the two endpoints are

described by (x1,y1) and (x2,y2). The equation of the line is used to determine the x, y coordinates

of all the points that lie between these two endpoints.

Using the equation of a straight line, y = mx + b where m = & b = the y interrupt, we can find

values of y by incrementing x from x =x1, to x = x2. By scan-converting these calculated x, y

values, we represent the line as a sequence of pixels.

48

Properties of Good Line Drawing Algorithm:

1. Line should appear Straight: We must appropriate the line by choosing addressable points

close to it. If we choose well, the line will appear straight, if not, we shall produce crossed lines.

The lines must be generated parallel or at 45° to the x and y-axes. Other lines cause a problem: a

line segment through it starts and finishes at addressable points, may happen to pass through no

another addressable points in between.

2. Lines should terminate accurately: Unless lines are plotted accurately, they may terminate at

the wrong place.

3. Lines should have constant density: Line density is proportional to the no. of dots displayed

divided by the length of the line.

49

To maintain constant density, dots should be equally spaced.

4. Line density should be independent of line length and angle: This can be done by computing

an approximating line-length estimate and to use a line-generation algorithm that keeps line density

constant to within the accuracy of this estimate.

5. Line should be drawn rapidly: This computation should be performed by special-purpose

hardware.

Bresenham's Line Algorithm

This algorithm is used for scan converting a line. It was developed by Bresenham. It is an

efficient method because it involves only integer addition, subtractions, and multiplication

operations. These operations can be performed very rapidly so lines can be generated quickly.

In this method, next pixel selected is that one who has the least distance from true line.

The method works as follows:

Assume a pixel P1'(x1',y1'),then select subsequent pixels one pixel position at a time in the

horizontal direction toward P2'(x2',y2').

Once a pixel in choose at any step

The next pixel is

1. Either the one to its right (lower-bound for the line)

2. One top its right and up (upper-bound for the line)

The line is best approximated by those pixels that fall the least distance from the path between

P1',P2'.

50

To chooses the next one between the bottom pixel S and top pixel T.

 If S is chosen

 We have xi+1=xi+1 and yi+1=yi

 If T is chosen

 We have xi+1=xi+1 and yi+1=yi+1

The actual y coordinates of the line at x = xi+1is

 y=mxi+1+b

The distance from S to the actual line in y direction

 s = y-yi

The distance from T to the actual line in y direction

 t = (yi+1)-y

Now consider the difference between these 2 distance values

 s - t

51

When (s-t) <0 ⟹ s < t

The closest pixel is S

When (s-t) ≥0 ⟹ s < t

The closest pixel is T

This difference is

 s-t = (y-yi)-[(yi+1)-y]

 = 2y - 2yi -1

Substituting m by and introducing decision variable

 di=△x (s-t)

 di=△x (2 (xi+1)+2b-2yi-1)

 =2△xyi-2△y-1△x.2b-2yi△x-△x

 di=2△y.xi-2△x.yi+c

Where c= 2△y+△x (2b-1)

We can write the decision variable di+1 for the next slip on

 di+1=2△y.xi+1-2△x.yi+1+c

 di+1-di=2△y.(xi+1-xi)- 2△x(yi+1-yi)

Since x_(i+1)=xi+1,we have

 di+1+di=2△y.(xi+1-xi)- 2△x(yi+1-yi)

52

Special Cases

If chosen pixel is at the top pixel T (i.e., di≥0)⟹ yi+1=yi+1

 di+1=di+2△y-2△x

If chosen pixel is at the bottom pixel T (i.e., di<0)⟹ yi+1=yi

 di+1=di+2△y

Finally, we calculate d1

 d1=△x[2m(x1+1)+2b-2y1-1]

 d1=△x[2(mx1+b-y1)+2m-1]

Since mx1+b-yi=0 and m = , we have

 d1=2△y-△x

Advantage:

1. It involves only integer arithmetic, so it is simple.

2. It avoids the generation of duplicate points.

3. It can be implemented using hardware because it does not use multiplication and division.

4. It is faster as compared to DDA (Digital Differential Analyzer) because it does not involve

floating point calculations like DDA Algorithm.

Disadvantage:

1. This algorithm is meant for basic line drawing only Initializing is not a part of Bresenham's line

algorithm. So to draw smooth lines, you should want to look into a different algorithm.

53

Bresenham's Line Algorithm:

Step1: Start Algorithm

Step2: Declare variable x1,x2,y1,y2,d,i1,i2,dx,dy

Step3: Enter value of x1,y1,x2,y2

 Where x1,y1are coordinates of starting point

 And x2,y2 are coordinates of Ending point

Step4: Calculate dx = x2-x1

 Calculate dy = y2-y1

 Calculate i1=2*dy

 Calculate i2=2*(dy-dx)

 Calculate d=i1-dx

Step5: Consider (x, y) as starting point and xendas maximum possible value of x.

 If dx < 0

 Then x = x2

 y = y2

 xend=x1

 If dx > 0

 Then x = x1

 y = y1

 xend=x2

Step6: Generate point at (x,y)coordinates.

54

Step7: Check if whole line is generated.

 If x > = xend

 Stop.

Step8: Calculate co-ordinates of the next pixel

 If d < 0

 Then d = d + i1

 If d ≥ 0

 Then d = d + i2

 Increment y = y + 1

Step9: Increment x = x + 1

Step10: Draw a point of latest (x, y) coordinates

Step11: Go to step 7

Step12: End of Algorithm

Example: Starting and Ending position of the line are (1, 1) and (8, 5). Find intermediate points.

X y d=d+I1 or I2

1 1 d+I2=1+(-6)=-5

2 2 d+I1=-5+8=3

3 2 d+I2=3+(-6)=-3

4 3 d+I1=-3+8=5

55

Solution: x1=1 y1=1

 x2=8 y2=5

 dx= x2- x1=8-1=7

 dy=y2- y1=5-1=4

 I1=2* ∆y=2*4=8

 I2=2*(∆y-∆x)=2*(4-7)=-6

 d = I1-∆x=8-7=1

Program to implement Bresenham's Line Drawing Algorithm:
1. #include<stdio.h>

2. #include<graphics.h>

3. void drawline(int x0, int y0, int x1, int y1)

5 3 d+I2=5+(-6)=-1

6 4 d+I1=-1+8=7

7 4 d+I2=7+(-6)=1

8 5

56

4. {

5. int dx, dy, p, x, y;

6. dx=x1-x0;

7. dy=y1-y0;

8. x=x0;

9. y=y0;

10. p=2*dy-dx;

11. while(x<x1)

12. {

13. if(p>=0)

14. {

15. putpixel(x,y,7);

16. y=y+1;

17. p=p+2*dy-2*dx;

18. }

19. else

20. {

21. putpixel(x,y,7);

22. p=p+2*dy;}

23. x=x+1;

24. }

25. }

26. int main()

27. {

28. int gdriver=DETECT, gmode, error, x0, y0, x1, y1;

29. initgraph(&gdriver, &gmode, "c:\\turboc3\\bgi");

30. printf("Enter co-ordinates of first point: ");

31. scanf("%d%d", &x0, &y0);

32. printf("Enter co-ordinates of second point: ");

33. scanf("%d%d", &x1, &y1);

34. drawline(x0, y0, x1, y1);

57

35. return 0;

36. }

Output:

Defining a Circle:

Circle is an eight-way symmetric figure. The shape of circle is the same in all quadrants. In each

quadrant, there are two octants. If the calculation of the point of one octant is done, then the other

seven points can be calculated easily by using the concept of eight-way symmetry.

For drawing, circle considers it at the origin. If a point is P1(x, y), then the other seven points will

be

58

So we will calculate only 45°arc. From which the whole circle can be determined easily.

If we want to display circle on screen then the putpixel function is used for eight points as shown

below:

 putpixel (x, y, color)

 putpixel (x, -y, color)

 putpixel (-x, y, color)

 putpixel (-x, -y, color)

 putpixel (y, x, color)

 putpixel (y, -x, color)

 putpixel (-y, x, color)

 putpixel (-y, -x, color)

59

Example: Let we determine a point (2, 7) of the circle then other points will be (2, -7), (-2, -7),

(-2, 7), (7, 2), (-7, 2), (-7, -2), (7, -2)

These seven points are calculated by using the property of reflection. The reflection is

accomplished in the following way:

The reflection is accomplished by reversing x, y co-ordinates.

here are two standards methods of mathematically defining a circle centered at the origin.

1. Defining a circle using Polynomial Method

2. Defining a circle using Polar Co-ordinates

Defining a circle using Polynomial Method:

The first method defines a circle with the second-order polynomial equation as shown in fig:

60

 y2=r2-x2

Where x = the x coordinate

 y = the y coordinate

 r = the circle radius

With the method, each x coordinate in the sector, from 90° to 45°, is found by stepping x from 0

to & each y coordinate is found by evaluating for each step of x.

Algorithm:

Step1: Set the initial variables

 r = circle radius

 (h, k) = coordinates of circle center

 x=o

 I = step size

 xend=

Step2: Test to determine whether the entire circle has been scan-converted.

If x > xend then stop.

61

Step3: Compute y =

Step4: Plot the eight points found by symmetry concerning the center (h, k) at the current (x, y)

coordinates.

 Plot (x + h, y +k) Plot (-x + h, -y + k)

 Plot (y + h, x + k) Plot (-y + h, -x + k)

 Plot (-y + h, x + k) Plot (y + h, -x + k)

 Plot (-x + h, y + k) Plot (x + h, -y + k)

Step5: Increment x = x + i

Step6: Go to step (ii).

Program to draw a circle using Polynomial Method:

1. #include<graphics.h>

2. #include<conio.h>

3. #include<math.h>

4. voidsetPixel(int x, int y, int h, int k)

5. {

6. putpixel(x+h, y+k, RED);

7. putpixel(x+h, -y+k, RED);

8. putpixel(-x+h, -y+k, RED);

9. putpixel(-x+h, y+k, RED);

10. putpixel(y+h, x+k, RED);

11. putpixel(y+h, -x+k, RED);

12. putpixel(-y+h, -x+k, RED);

13. putpixel(-y+h, x+k, RED);

14. }

15. main()

16. {

17. intgd=0, gm,h,k,r;

18. double x,y,x2;

19. h=200, k=200, r=100;

20. initgraph(&gd, &gm, "C:\\TC\\BGI ");

21. setbkcolor(WHITE);

22. x=0,y=r;

23. x2 = r/sqrt(2);

62

24. while(x<=x2)

25. {

26. y = sqrt(r*r - x*x);

27. setPixel(floor(x), floor(y), h,k);

28. x += 1;

29. }

30. getch();

31. closegraph();

32. return 0;

33. }

Output:

Defining a circle using Polar Co-ordinates:

The second method of defining a circle makes use of polar coordinates as shown in fig:

 x=r cos θ y = r sin θ

Where θ=current angle

r = circle radius

x = x coordinate

y = y coordinate

By this method, θ is stepped from 0 to & each value of x & y is calculated.

63

Algorithm:

Step1: Set the initial variables:

 r = circle radius

 (h, k) = coordinates of the circle center

 i = step size

 θ_end=

 θ=0

Step2: If θ>θendthen stop.

Step3: Compute

 x = r * cos θ y=r*sin?θ

Step4: Plot the eight points, found by symmetry i.e., the center (h, k), at the current (x, y)

coordinates.

Plot (x + h, y +k) Plot (-x + h, -y + k)

Plot (y + h, x + k) Plot (-y + h, -x + k)

64

Plot (-y + h, x + k) Plot (y + h, -x + k)

Plot (-x + h, y + k) Plot (x + h, -y + k)

Step5: Increment θ=θ+i

Step6: Go to step (ii).

Program to draw a circle using Polar Coordinates:

1. #include <graphics.h>

2. #include <stdlib.h>

3. #define color 10

4. void eightWaySymmetricPlot(int xc,int yc,int x,int y)

5. {

6. putpixel(x+xc,y+yc,color);

7. putpixel(x+xc,-y+yc,color);

8. putpixel(-x+xc,-y+yc,color);

9. putpixel(-x+xc,y+yc,color);

10. putpixel(y+xc,x+yc,color);

11. putpixel(y+xc,-x+yc,color);

12. putpixel(-y+xc,-x+yc,color);

13. putpixel(-y+xc,x+yc,color);

14. }

15. void PolarCircle(int xc,int yc,int r)

16. {

17. int x,y,d;

18. x=0;

19. y=r;

20. d=3-2*r;

21. eightWaySymmetricPlot(xc,yc,x,y);

22. while(x<=y)

23. {

24. if(d<=0)

25. {

26. d=d+4*x+6;

27. }

28. else

29. {

30. d=d+4*x-4*y+10;

31. y=y-1;

32. }

33. x=x+1;

65

34. eightWaySymmetricPlot(xc,yc,x,y);

35. }

36. }

37. int main(void)

38. {

39. int gdriver = DETECT, gmode, errorcode;

40. int xc,yc,r;

41. initgraph(&gdriver, &gmode, "c:\\turboc3\\bgi");

42. errorcode = graphresult();

43. if (errorcode != grOk)

44. {

45. printf("Graphics error: %s\n", grapherrormsg(errorcode));

46. printf("Press any key to halt:");

47. getch();

48. exit(1);

49. }

50. printf("Enter the values of xc and yc ,that is center points of circle : ");

51. scanf("%d%d",&xc,&yc);

52. printf("Enter the radius of circle : ");

53. scanf("%d",&r);

54. PolarCircle(xc,yc,r);

55. getch();

56. closegraph();

57. return 0;

58. }

Output:

66

Bresenham's Circle Algorithm:

Scan-Converting a circle using Bresenham's algorithm works as follows: Points are generated from

90° to 45°, moves will be made only in the +x & -y directions as shown in fig:

The best approximation of the true circle will be described by those pixels in the raster that falls

the least distance from the true circle. We want to generate the points from.

90° to 45°. Assume that the last scan-converted pixel is P1 as shown in fig. Each new point closest

to the true circle can be found by taking either of two actions.

67

1. Move in the x-direction one unit or

2. Move in the x- direction one unit & move in the negative y-direction one unit.

Let D (Si) is the distance from the origin to the true circle squared minus the distance to point

P3 squared. D (Ti) is the distance from the origin to the true circle squared minus the distance to

point P2 squared. Therefore, the following expressions arise.

 D (Si)=(xi-1+1)2+ yi-1
2 -r2

 D (Ti)=(xi-1+1)2+(yi-1 -1)2-r2

Since D (Si) will always be +ve & D (Ti) will always be -ve, a decision variable d may be

defined as follows:

di=D (Si)+ D (Ti)

Therefore,

di=(xi-1+1)2+ yi-1
2 -r2+(xi-1+1)2+(yi-1 -1)2-r2

From this equation, we can drive initial values of di as

If it is assumed that the circle is centered at the origin, then at the first step x = 0 & y = r.

68

Therefore,

 di=(0+1)2+r2 -r2+(0+1)2+(r-1)2-r2

 =1+1+r2-2r+1-r2

 = 3 - 2r

Thereafter, if d_i<0, then only x is incremented.

xi+1=xi+1 di+1=di+ 4xi+6

& if di≥0, then x & y are incremented

xi+1=xi+1

 yi+1 =yi+ 1

di+1=di+ 4 (xi-yi)+10

Bresenham's Circle Algorithm:

Step1: Start Algorithm

Step2: Declare p, q, x, y, r, d variables

 p, q are coordinates of the center of the circle

 r is the radius of the circle

Step3: Enter the value of r

Step4: Calculate d = 3 - 2r

Step5: Initialize x=0

 &nbsy= r

Step6: Check if the whole circle is scan converted

 If x > = y

 Stop

Step7: Plot eight points by using concepts of eight-way symmetry. The center is at (p, q).

Current active pixel is (x, y).

 putpixel (x+p, y+q)

 putpixel (y+p, x+q)

 putpixel (-y+p, x+q)

 putpixel (-x+p, y+q)

69

 putpixel (-x+p, -y+q)

 putpixel (-y+p, -x+q)

 putpixel (y+p, -x+q)

 putpixel (x+p, -y-q)

Step8: Find location of next pixels to be scanned

 If d < 0

 then d = d + 4x + 6

 increment x = x + 1

 If d ≥ 0

 then d = d + 4 (x - y) + 10

 increment x = x + 1

 decrement y = y - 1

Step9: Go to step 6

Step10: Stop Algorithm

Example: Plot 6 points of circle using Bresenham Algorithm. When radius of circle is 10 units.

The circle has centre (50, 50).

Solution: Let r = 10 (Given)

Step1: Take initial point (0, 10)

 d = 3 - 2r

 d = 3 - 2 * 10 = -17

 d < 0 ∴ d = d + 4x + 6

 = -17 + 4 (0) + 6

 = -11

Step2: Plot (1, 10)

 d = d + 4x + 6 (∵ d < 0)

 = -11 + 4 (1) + 6

 = -1

Step3: Plot (2, 10)

 d = d + 4x + 6 (∵ d < 0)

 = -1 + 4 x 2 + 6

 = 13

Step4: Plot (3, 9) d is > 0 so x = x + 1, y = y - 1

 d = d + 4 (x-y) + 10 (∵ d > 0)

 = 13 + 4 (3-9) + 10

 = 13 + 4 (-6) + 10

 = 23-24=-1

70

Step5: Plot (4, 9)

 d = -1 + 4x + 6

 = -1 + 4 (4) + 6

 = 21

Step6: Plot (5, 8)

 d = d + 4 (x-y) + 10 (∵ d > 0)

 = 21 + 4 (5-8) + 10

 = 21-12 + 10 = 19

So P1 (0,0)⟹(50,50)

 P2 (1,10)⟹(51,60)

 P3 (2,10)⟹(52,60)

 P4 (3,9)⟹(53,59)

 P5 (4,9)⟹(54,59)

 P6 (5,8)⟹(55,58)

Program to draw a circle using Bresenham's circle drawing

algorithm:

1. #include <graphics.h>

2. #include <stdlib.h>

3. #include <stdio.h>

4. #include <conio.h>

5. #include <math.h>

6. void EightWaySymmetricPlot(int xc,int yc,int x,int y)

7. {

8. putpixel(x+xc,y+yc,RED);

9. putpixel(x+xc,-y+yc,YELLOW);

10. putpixel(-x+xc,-y+yc,GREEN);

11. putpixel(-x+xc,y+yc,YELLOW);

12. putpixel(y+xc,x+yc,12);

13. putpixel(y+xc,-x+yc,14);

14. putpixel(-y+xc,-x+yc,15);

15. putpixel(-y+xc,x+yc,6);

16. }

17. void BresenhamCircle(int xc,int yc,int r)

18. {

19. int x=0,y=r,d=3-(2*r);

20. EightWaySymmetricPlot(xc,yc,x,y);

21. while(x<=y)

22. {

71

23. if(d<=0)

24. {

25. d=d+(4*x)+6;

26. }

27. else

28. {

29. d=d+(4*x)-(4*y)+10;

30. y=y-1;

31. }

32. x=x+1;

33. EightWaySymmetricPlot(xc,yc,x,y);

34. }

35. }

36. int main(void)

37. {

38. /* request auto detection */

39. int xc,yc,r,gdriver = DETECT, gmode, errorcode;

40. /* initialize graphics and local variables */

41. initgraph(&gdriver, &gmode, "C:\\TURBOC3\\BGI");

42. /* read result of initialization */

43. errorcode = graphresult();

44. if (errorcode != grOk) /* an error occurred */

45. {

46. printf("Graphics error: %s\n", grapherrormsg(errorcode));

47. printf("Press any key to halt:");

48. getch();

49. exit(1); /* terminate with an error code */

50. }

51. printf("Enter the values of xc and yc :");

52. scanf("%d%d",&xc,&yc);

53. printf("Enter the value of radius :");

54. scanf("%d",&r);

55. BresenhamCircle(xc,yc,r);

56. getch();

57. closegraph();

58. return 0;

59. }

72

Output:

Midpoint Circle Algorithm

It is based on the following function for testing the spatial relationship between the arbitrary

point (x, y) and a circle of radius r centered at the origin:

73

Now, consider the coordinates of the point halfway between pixel T and pixel S

This is called midpoint (xi+1,yi-) and we use it to define a decision parameter:

 Pi=f (xi+1,yi-) = (xi+1)
2+(yi-)2-r2equation 2

If Pi is -ve ⟹midpoint is inside the circle and we choose pixel T

If Pi is+ve ⟹midpoint is outside the circle (or on the circle) and we choose pixel S.

The decision parameter for the next step is:

Pi+1=(xi+1+1)2+(yi+1-)2- r2............equation 3

Since xi+1=xi+1, we have

If pixel T is choosen ⟹Pi<0

We have yi+1=yi

If pixel S is choosen ⟹Pi≥0

We have yi+1=yi-1

We can continue to simplify this in n terms of (xi, yi) and get

74

Now, initial value of Pi (0, r) from equation 2

We can put ≅1

∴r is an integer

So, P1=1-r

Algorithm:

Step1: Put x =0, y =r in equation 2

 We have p=1-r

Step2: Repeat steps while x ≤ y

 Plot (x, y)

 If (p<0)

Then set p = p + 2x + 3

Else

 p = p + 2(x-y)+5

 y =y - 1 (end if)

 x =x+1 (end loop)

Step3: End

Program to draw a circle using Midpoint Algorithm:

1. #include <graphics.h>

2. #include <stdlib.h>

3. #include <math.h>

4. #include <stdio.h>

5. #include <conio.h>

6. #include <iostream.h>

7. class bresen

75

8. {

9. float x, y,a, b, r, p;

10. public:

11. void get ();

12. void cal ();

13. };

14. void main ()

15. {

16. bresen b;

17. b.get ();

18. b.cal ();

19. getch ();

20. }

21. Void bresen :: get ()

22. {

23. cout<<"ENTER CENTER AND RADIUS";

24. cout<< "ENTER (a, b)";

25. cin>>a>>b;

26. cout<<"ENTER r";

27. cin>>r;

28. }

29. void bresen ::cal ()

30. {

31. /* request auto detection */

32. int gdriver = DETECT,gmode, errorcode;

33. int midx, midy, i;

34. /* initialize graphics and local variables */

35. initgraph (&gdriver, &gmode, " ");

36. /* read result of initialization */

37. errorcode = graphresult ();

38. if (errorcode ! = grOK) /*an error occurred */

39. {

40. printf("Graphics error: %s \n", grapherrormsg (errorcode);

41. printf ("Press any key to halt:");

42. getch ();

43. exit (1); /* terminate with an error code */

44. }

45. x=0;

46. y=r;

47. putpixel (a, b+r, RED);

76

48. putpixel (a, b-r, RED);

49. putpixel (a-r, b, RED);

50. putpixel (a+r, b, RED);

51. p=5/4)-r;

52. while (x<=y)

53. {

54. If (p<0)

55. p+= (4*x)+6;

56. else

57. {

58. p+=(2*(x-y))+5;

59. y--;

60. }

61. x++;

62. putpixel (a+x, b+y, RED);

63. putpixel (a-x, b+y, RED);

64. putpixel (a+x, b-y, RED);

65. putpixel (a+x, b-y, RED);

66. putpixel (a+x, b+y, RED);

67. putpixel (a+x, b-y, RED);

68. putpixel (a-x, b+y, RED);

69. putpixel (a-x, b-y, RED);

70. }

71. }

Output:

Scan Converting an Ellipse:

77

The ellipse is also a symmetric figure like a circle but is four-way symmetry rather than eight-

way.

Program to Implement Ellipse Drawing Algorithm:

1. #include<stdio.h>

2. #include<conio.h>

3. #include<graphics.h>

4. #include<math.h>

5. void disp();

6. float x,y;

7. intxc,yc;

8. void main()

9. {

10. intgd=DETECT,gm,a,b;

11. float p1,p2;

12. clrscr();

13. initgraph(&gd,&gm,"c:\\turboc3\\bgi");

14. printf("*** Ellipse Generating Algorithm ***\n");

15. printf("Enter the value of Xc\t");

16. scanf("%d",&xc);

17. printf("Enter the value of yc\t");

18. scanf("%d",&yc);

19. printf("Enter X axis length\t");

20. scanf("%d",&a);

21. printf("Enter Y axis length\t");

78

22. scanf("%d",&b);

23. x=0;y=b;

24. disp();

25. p1=(b*b)-(a*a*b)+(a*a)/4;

26. while((2.0*b*b*x)<=(2.0*a*a*y))

27. {

28. x++;

29. if(p1<=0)

30. p1=p1+(2.0*b*b*x)+(b*b);

31. else

32. {

33. y--;

34. p1=p1+(2.0*b*b*x)+(b*b)-(2.0*a*a*y);

35. }

36. disp();

37. x=-x;

38. disp();

39. x=-x;

40. delay(50);

41. }

42. x=a;

43. y=0;

44. disp();

45. p2=(a*a)+2.0*(b*b*a)+(b*b)/4;

46. while((2.0*b*b*x)>(2.0*a*a*y))

47. {

48. y++;

49. if(p2>0)

50. p2=p2+(a*a)-(2.0*a*a*y);

51. else

52. {

53. x--;

54. p2=p2+(2.0*b*b*x)-(2.0*a*a*y)+(a*a);

55. }

56. disp();

57. y=-y;

58. disp();

59. y=-y;

60. delay(50);

61. }

79

62. getch();

63. closegraph();

64. }

65. void disp()

66. {

67. putpixel(xc+x,yc+y,7);

68. putpixel(xc-x,yc+y,7);

69. putpixel(xc+x,yc-y,7);

70. putpixel(xc+x,yc-y,7);

71. }

Output:

ATTRIBUTES

The features or characteristics of an output primitive are known as Attribute. In other words, any

parameter that affects the way a primitive is to be displayed is known as Attribute. Some attributes,

such as colour and size, are basic characteristics of primitive. Some attributes control the basic

display properties of primitives. For example, lines can be dotted or dashed, thin or thick. Areas

can be filled with one colour or with multiple colours pattern. Text can appear from left to right,

slanted or vertical.

LINE ATTRIBUTES

80

Basic attributes of a straight-line segment are its type, its width, and its color. In some graphics

packages, lines can also be displayed using selected pen or brush options.

Line Type

Solid lines, Dashed lines, and Dotted lines.

We modify a line drawing algorithm to generate such lines by setting the length and spacing of

displayed solid sections along the line path.

A dashed line could be displayed by generating an inter dash spacing that is equal to the length of

the solid sections. Both the length of the dashes and the inter dash spacing are often specified as

user options. A dotted line can be displayed by generating very short dashes with the spacing equal

to or greater than the dash size. Similar methods are used to produce other line-type variations.

i. Solid Line

ii. Dashed Line

iii. Dotted Line

To set line type attributes in a PHIGS application program, a user invokes the

function.

 setLinetype (It)

 Where parameter I t is assigned a positive integer value of 1,2,3, or 4 to generate

lines that are, respectively, solid, dashed, dotted, or dash-dotted.

81

Line Width

We set the line-width attribute with the command: Line-width parameter lw. is assigned a positive

number to indicate the relative width of the line to be displayed. A value of 1 specifies a standard-

width line. On.

 For lines with slope magnitude greater than 1, we can plot thick lines with horizontal spans,

alternately picking up pixels to the right and left of the line path.

Problem with implementing width options using horizontal or vertical pixel spans is that the

method produces lines whose ends are horizontal or vertical regardless of the slope of the

line. This effect is more noticeable with very thick lines. We can adjust the shape of the line ends

to give them a better appearance by adding line caps

 One kind of line cap is the butt cap obtained by adjusting the end positions of the component

parallel lines so that the thick line is displayed with square ends that are perpendicular to the line

path. If the specified line has slope m, the square end of the thick line has slope - l /m.

 Another line cap is the round cap obtained by adding a filled semicircle to each butt cap. The

circular arcs are centered on the line endpoints and have a diameter equal to the line thickness.

 A third type of line cap is the projecting square cap. Here, we simply extend the line and add butt

caps that are positioned one-half of the line width beyond the specified endpoints.

82

We can generate thick polylines that are smoothly joined at the cost of additional processing at the

segment endpoints.

 A miter join is accomplished by extending the outer boundaries of each of the two linesuntil they

meet.

A round join is produced by capping the connection between the two segments with a circular

boundary whose diameter is equal to the linewidth.

And a bevel join is generated by displaying the line segments with butt caps and filling in the

triangular gap where the segments meet.

Pen and Brush Options

83

Lines can be displayed with pen or brush selections. Options in this category include shape, size,

and pattern.

 These shapes can be stored in a pixel mask that identifies the array of pixel positions that are to

be set along the line path. Lines generated with pen (or brush) shapes can be displayed in various

widths by changing the size of the mask.

Line Color

When a system provides color (or intensity) options, a parameter giving the current.

color index is included in the list of system-attribute values. A polyline routine displays a line in

the current color by setting this color value in the framebuffer at pixel locations along the line path

using the setpixel procedure.

 The number of color choices depends on the number of bits available per pixel in the frame buffer.

We set the line color value in PHlGS with the function

Set PolylineColourIndex (le)

CURVE ATTRIBUTES

Parameters for curve attributes are the same as those for line segments. We can display curves

with varying colors, widths, dotdash patterns, and available pen or brush options.

AREA FILL ATTRIBUTES

84

is generated with a line drawing routine as a closed polyline

85

CHARACTER ATTRIBUTES

The appearance of displayed characters is controlled by attributes such as font, size, color, and

orientation. Attributes can be set for entire character strings (text) and for individual characters

defined as marker symbols.

TEXT ATTRIBUTES

There are a great many text options that can be made available to graphics programmers.

First of all, there is the choice of font (or typeface), which is a set of characters with a particular

design style such as New York, Courier, Helvetica, London, 'Times Roman, and various special

symbol groups.

86

Character Attributes:

The appearance of displayed characters is controlled by attributes such as font, size, colour and

orientation. Attributes can be set both for entire character strings and for individual characters,

known as Marker symbols.

1. Text Attributes: There are many text options available, such as font, colour, size,

spacing, and orientation.

2. Text Style: The characters in a selected font can also be displayed in various

underlining styles (solid, dotted, dashed, double), in bold, in italics, shadow style,

etc. Font options can be made available as pre defined sets of grid patterns or as

character sets designed with lines and curves.

3. Text Colour: Colour settings for displayed text are stored in the system attribute list

and transferred to the frame buffer by character loading functions. When a character

string is displayed, the current colour is used to set pixel values in the frame buffer

corresponding to the character shapes and position.

87

4. Text Size: We can adjust text size by changing the overall dimensions, i.e., width

and height, of characters or by changing only the width.

5. Character size is specified in Points, where 1 point is 0.013837 inch or

approximately 1/72 inch. Point measurements specify the size of the Character

Body. Different fonts with the same point specifications can have different

character sizes depending upon the design of the font. Character Body Topline

Capline Bottomline Baseline Character H Height f q Descenders

The distance between Topline and Bottomline is same for all characters in a particular size and

font, but the width may be different. A smaller body width is assigned to narrow characters such

as i, j, l, etc.

compared to broad characters such as W or M. The Character Height is the distance between the

Baseline and Capline of characters. Kerned characters, such as f and j, extend beyond the character-

width limits. And letters with descenders, such as g, j, p, q, extend below the baseline.

The size can be changed in such a way so that the width and spacing of characters is adjusted to

maintain the same text proportions.

88

 For example, doubling the height also doubles the character width and the spacing between

characters. Also, only the width of the character s can be changes without affecting its height.

Similarly, spacing between characters can be increased without changing height or width of

individual characters.

The effect of different character-height setting, character-width setting, and character spacing on

a text is shown below.

HEIGHT1

WIDTH1

S P A C I N G 1

HEIGHT2

WIDTH2

S P A C I N G 2

HEIGHT3

WIDTH3

S P A C I N G 3

Effect of changing Height, Width and Spacing

 Text Orientation: The text can be displayed at various angles, known as orientation. A

procedure for orienting text rotates characters so that the sides of character bodies, from baseline

to topline at aligned at some angle. Character strings can be arranged vertically or horizontally. A

text orientated by 45 degrees in anticlockwise and clockwise direction

 Text Path: In some applications the character strings are arranged vertically or horizontally.

This is known as Text Path. Text path can be right, left, up or down.

89

Text Path: In some applications the character strings are arranged vertically or horizontally. This

is known as Text Path. Text path can be right, left, up or down.

Text Alignment: Another attribute for character strings is alignment. This attribute specifies how

text is to be positioned with respect to the start coordinates. Vertical alignment can be top, cap,

half, base and bottom. Similarly, horizontal alignment can be left, center and right.

90

91

UNIT III

2D Geometric Transformations:

Introduction of Transformations

Computer Graphics provide the facility of viewing object from different angles. The architect can

study building from different angles i.e.

Front Evaluation

Side elevation

Top plan

A Cartographer can change the size of charts and topographical maps. So if graphics images are

coded as numbers, the numbers can be stored in memory. These numbers are modified by

mathematical operations called as Transformation.

The purpose of using computers for drawing is to provide facility to user to view the object from

different angles, enlarging or reducing the scale or shape of object called as Transformation.

Two essential aspects of transformation are given below:

Each transformation is a single entity. It can be denoted by a unique name or symbol.

It is possible to combine two transformations, after connecting a single transformation is obtained,

e.g., A is a transformation for translation. The B transformation performs scaling. The combination

of two is C=AB. So C is obtained by concatenation property.

There are two complementary points of view for describing object transformation.

Geometric Transformation: The object itself is transformed relative to the coordinate system or

background. The mathematical statement of this viewpoint is defined by geometric

transformations applied to each point of the object.

Coordinate Transformation: The object is held stationary while the coordinate system is

transformed relative to the object. This effect is attained through the application of coordinate

transformations.

92

An example that helps to distinguish these two viewpoints:

The movement of an automobile against a scenic background we can simulate this by

Moving the automobile while keeping the background fixed-(Geometric Transformation)

We can keep the car fixed while moving the background scenery- (Coordinate Transformation)

Types of Transformations:

• Translation

• Scaling

• Rotating

• Reflection

• Shearing

Translation

It is the straight-line movement of an object from one position to another is called Translation.

Here the object is positioned from one coordinate location to another.

Translation of point:

To translate a point from coordinate position (x, y) to another (x1 y1), we add algebraically the

translation distances Tx and Ty to original coordinate.

 x1=x+Tx

 y1=y+Ty

The translation pair (Tx,Ty) is called as shift vector.

Translation is a movement of objects without deformation. Every position or point is translated by

the same amount. When the straight line is translated, then it will be drawn using endpoints.

https://www.javatpoint.com/computer-graphics-translation
https://www.javatpoint.com/computer-graphics-scaling
https://www.javatpoint.com/computer-graphics-rotation
https://www.javatpoint.com/computer-graphics-reflection
https://www.javatpoint.com/computer-graphics-shearing

93

For translating polygon, each vertex of the polygon is converted to a new position. Similarly,

curved objects are translated. To change the position of the circle or ellipse its center coordinates

are transformed, then the object is drawn using new coordinates.

Let P is a point with coordinates (x, y). It will be translated as (x1 y1).

Matrix for Translation:

94

Scaling:

It is used to alter or change the size of objects. The change is done using scaling factors. There are

two scaling factors, i.e. Sx in x direction Sy in y-direction. If the original position is x and y. Scaling

factors are Sx and Sy then the value of coordinates after scaling will be x1 and y1.

If the picture to be enlarged to twice its original size then Sx = Sy =2. If Sx and Sy are not equal

then scaling will occur but it will elongate or distort the picture.

If scaling factors are less than one, then the size of the object will be reduced. If scaling factors are

higher than one, then the size of the object will be enlarged.

If Sx and Sy are equal it is also called as Uniform Scaling. If not equal then called as Differential

Scaling. If scaling factors with values less than one will move the object closer to coordinate origin,

while a value higher than one will move coordinate position farther from origin.

Enlargement: If T1= ,If (x1 y1)is original position and T1is translation vector then (x2 y2)

are coordinated after scaling

The image will be enlarged two times

95

Reduction: If T1= . If (x1 y1) is original position and T1 is translation vector, then

(x2 y2) are coordinates after scaling

96

Matrix for Scaling:

Example: Prove that 2D Scaling transformations are commutative i.e, S1 S2=S2 S1.

Solution: S1 and S2 are scaling matrices

Rotation:

It is a process of changing the angle of the object. Rotation can be clockwise or anticlockwise. For

rotation, we have to specify the angle of rotation and rotation point. Rotation point is also called a

pivot point. It is print about which object is rotated.

Types of Rotation:

1. Anticlockwise

97

2. Counterclockwise

The positive value of the pivot point (rotation angle) rotates an object in a counter-clockwise (anti-

clockwise) direction.

The negative value of the pivot point (rotation angle) rotates an object in a clockwise direction.

When the object is rotated, then every point of the object is rotated by the same angle.

Straight Line: Straight Line is rotated by the endpoints with the same angle and redrawing the

line between new endpoints.

Polygon: Polygon is rotated by shifting every vertex using the same rotational angle.

Curved Lines: Curved Lines are rotated by repositioning of all points and drawing of the curve at

new positions.

Circle: It can be obtained by center position by the specified angle.

Ellipse: Its rotation can be obtained by rotating major and minor axis of an ellipse by the desired

angle.

98

Matrix for rotation is a clockwise direction.

99

Matrix for rotation is an anticlockwise direction.

Matrix for homogeneous co-ordinate rotation (clockwise)

Matrix for homogeneous co-ordinate rotation (anticlockwise)

Rotation about an arbitrary point: If we want to rotate an object or point about an arbitrary

point, first of all, we translate the point about which we want to rotate to the origin. Then rotate

point or object about the origin, and at the end, we again translate it to the original place. We get

rotation about an arbitrary point.

Example: The point (x, y) is to be rotated

The (xc yc) is a point about which counterclockwise rotation is done

Step1: Translate point (xc yc) to origin

100

Step2: Rotation of (x, y) about the origin

Step3: Translation of center of rotation back to its original position

101

Example1: Prove that 2D rotations about the origin are commutative i.e. R1 R2=R2 R1.

Solution: R1 and R2are rotation matrices

102

Example2: Rotate a line CD whose endpoints are (3, 4) and (12, 15) about origin through a 45°

anticlockwise direction.

Solution: The point C (3, 4)

103

104

Example3: Rotate line AB whose endpoints are A (2, 5) and B (6, 12) about origin through a 30°

clockwise direction.

105

Solution: For rotation in the clockwise direction. The matrix is

Step1: Rotation of point A (2, 5). Take angle 30°

Step2: Rotation of point B (6, 12)

106

Program to rotate a line:

1. #include<stdio.h>

2. #include<graphics.h>

3. #include<math.h>

4. int main()

5. {

6. intgd=0,gm,x1,y1,x2,y2;

7. double s,c, angle;

8. initgraph(&gd, &gm, "C:\\TC\\BGI");

9. setcolor(RED);

10. printf("Enter coordinates of line: ");

11. scanf("%d%d%d%d",&x1,&y1,&x2,&y2);

12. cleardevice();

13. setbkcolor(WHITE);

107

14. line(x1,y1,x2,y2);

15. getch();

16. setbkcolor(BLACK);

17. printf("Enter rotation angle: ");

18. scanf("%lf", &angle);

19. setbkcolor(WHITE);

20. c = cos(angle *3.14/180);

21. s = sin(angle *3.14/180);

22. x1 = floor(x1 * c + y1 * s);

23. y1 = floor(-x1 * s + y1 * c);

24. x2 = floor(x2 * c + y2 * s);

25. y2 = floor(-x2 * s + y2 * c);

26. cleardevice();

27. line(x1, y1 ,x2, y2);

28. getch();

29. closegraph();

30. return 0;

31. }

Output:

Before rotation

108

After rotation

109

Program to rotate a Triangle:

1. #include<stdio.h>

2. #include<graphics.h>

3. #include<math.h>

4. main()

5. {

6. intgd=0,gm,x1,y1,x2,y2,x3,y3;

7. double s,c, angle;

8. initgraph(&gd, &gm, "C:\\TURBOC3\\BGI");

9. setcolor(RED);

10. printf("Enter coordinates of triangle: ");

11. scanf("%d%d%d%d%d%d",&x1,&y1,&x2,&y2, &x3, &y3);

12. setbkcolor(WHITE);

13. cleardevice();

14. line(x1,y1,x2,y2);

15. line(x2,y2, x3,y3);

16. line(x3, y3, x1, y1);

17. getch();

18. setbkcolor(BLACK);

19. printf("Enter rotation angle: ");

110

20. scanf("%lf", &angle);

21. setbkcolor(WHITE);

22. c = cos(angle *M_PI/180);

23. s = sin(angle *M_PI/180);

24. x1 = floor(x1 * c + y1 * s);

25. y1 = floor(-x1 * s + y1 * c);

26. x2 = floor(x2 * c + y2 * s);

27. y2 = floor(-x2 * s + y2 * c);

28. x3 = floor(x3 * c + y3 * s);

29. y3 = floor(-x3 * s + y3 * c);

30. cleardevice();

31. line(x1, y1 ,x2, y2);

32. line(x2,y2, x3,y3);

33. line(x3, y3, x1, y1);

34. getch();

35. closegraph();

36. return 0;

37. }

Output:

Before rotation

111

After rotation

112

Reflection:

It is a transformation which produces a mirror image of an object. The mirror image can be either

about x-axis or y-axis. The object is rotated by180°.

Types of Reflection:

1. Reflection about the x-axis

2. Reflection about the y-axis

3. Reflection about an axis perpendicular to xy plane and passing through the origin

4. Reflection about line y=x

1. Reflection about x-axis: The object can be reflected about x-axis with the help of the following

matrix

113

In this transformation value of x will remain same whereas the value of y will become negative.

Following figures shows the reflection of the object axis. The object will lie another side of the x-

axis.

2. Reflection about y-axis: The object can be reflected about y-axis with the help of following

transformation matrix

Here the values of x will be reversed, whereas the value of y will remain the same. The object will

lie another side of the y-axis.

The following figure shows the reflection about the y-axis

114

3. Reflection about an axis perpendicular to xy plane and passing through origin:

In the matrix of this transformation is given below

In this value of x and y both will be reversed. This is also called as half revolution about the origin.

115

4. Reflection about line y=x: The object may be reflected about line y = x with the help of

following transformation matrix

First of all, the object is rotated at 45°. The direction of rotation is clockwise. After it reflection is

done concerning x-axis. The last step is the rotation of y=x back to its original position that is

counterclockwise at 45°.

Example: A triangle ABC is given. The coordinates of A, B, C are given as

 A (3 4)

 B (6 4)

 C (4 8)

Find reflected position of triangle i.e., to the x-axis.

Solution:

116

The a point coordinates after reflection

The b point coordinates after reflection

The coordinate of point c after reflection

117

a (3, 4) becomes a1 (3, -4)

b (6, 4) becomes b1 (6, -4)

c (4, 8) becomes c1 (4, -8)

Program to perform Mirror Reflection about a line:

1. #include <iostream.h>

2. #include <conio.h>

3. #include <graphics.h>

4. #include <math.h>

5. #include <stdlib.h>

6. #define pi 3.14

7. class arc

8. {

9. float x[10],y[10],theta,ref[10][10],ang;

10. float p[10][10],p1[10][10],x1[10],y1[10],xm,ym;

11. int i,k,j,n;

12. public:

13. void get();

14. void cal ();

15. void map ();

16. void graph ();

17. void plot ();

18. void plot1();

19. };

20. void arc::get ()

21. {

118

22. cout<<"\n ENTER ANGLE OF LINE INCLINATION AND Y INTERCEPT";

23. cin>> ang >> b;

24. cout <<"\n ENTER NO OF VERTICES";

25. cin >> n;

26. cout <<"\n ENTER";

27. for (i=0; i<n; i++)

28. {

29. cout<<"\n x["<<i<<"] and y["<<i<<"]";

30. }

31. theta =(ang * pi)/ 180;

32. ref [0] [0] = cos (2 * theta);

33. ref [0] [1] = sin (2 * theta);

34. ref [0] [2] = -b *sin (2 * theta);

35. ref [1] [0] = sin (2 * theta);

36. ref [1] [1] = -cos (2 * theta);

37. ref [1] [2] = b * (cos (2 * theta)+1);

38. ref [2] [0]=0;

39. ref [2] [1]=0;

40. ref [2] [2] = 1;

41. }

42. void arc :: cal ()

43. {

44. for (i=0; i < n; i++)

45. {

46. p[0] [i] = x [i];

47. p [1] [i] = y [i];

48. p [2] [i] = 1;

49. }

50. for (i=0; i<3;i++)

51. {

52. for (j=0; j<n; j++)

119

53. {

54. p1 [i] [j]=0;

55. for (k=0;k<3; k++)

56. }

57. p1 [i] [j] + = ref [i] [k] * p [k] [j];

58. }

59. for (i=0; i<n; i++)

60. {

61. x1 [i]=p1[0] [i];

62. y1 [i] = p1 [1] [i];

63. }

64. }

65. void arc :: map ()

66. {

67. int gd = DETECT,gm;

68. initgraph (&gd, &gm, " ");

69. int errorcode = graphresult ();

70. /* an error occurred */

71. if (errorcode ! = grOK)

72. {

73. printf ("Graphics error: %s \n", grapherrormsg (errorcode));

74. printf ("Press any key to halt:");

75. getch ();

76. exit (1); /* terminate with an error code */

77. }

78. }

79. void arc :: graph ()

80. {

81. xm=getmaxx ()/2;

82. ym=getmaxy ()/2;

83. line (xm, 0, xmm 2*ym);

120

84. }

85. void arc :: plot 1 ()

86. {

87. for (i=0; i <n-1; i++)

88. {

89. circle (x1[i]+xm, (-y1[i]+ym), 2);

90. line (x1[i]+xm, (-y1[i]+ym), x1[i+1]+xm, (-y1[i+1]+ym));

91. }

92. line (x1[n-1)+xm, (-y1[n-1]+ym), x1[0]+xm, (-y1[0]+ym));

93. getch();

94. }

95. void arc :: plot ()

96. {

97. for (i=0; i <n-1; i++)

98. {

99. circle (x1[i]+xm, (-y1[i]+ym, 2);

100. line (x1[i]+xm, (-y1[i]+ym), x[i+1]+xm, (-y1[i+1]+ym));

101. }

102. line (x[n-1]+xm, (-y1[n-1]+ym), x[0]+xm, (-y[0]+ym));

103. getch();

104. }

105. void main ()

106. {

107. class arc a;

108. clrscr();

109. a.map();

110. a.graph();

111. a.get();

112. a.cal();

113. a.plot();

114. a.plot1();

121

115. getch();

116. }

Output:

Shearing:

It is transformation which changes the shape of object. The sliding of layers of object occur. The

shear can be in one direction or in two directions.

Shearing in the X-direction: In this horizontal shearing sliding of layers occur. The homogeneous

matrix for shearing in the x-direction is shown below:

122

Shearing in the Y-direction: Here shearing is done by sliding along vertical or y-axis.

Shearing in X-Y directions: Here layers will be slided in both x as well as y direction. The sliding

will be in horizontal as well as vertical direction. The shape of the object will be distorted. The

matrix of shear in both directions is given by:

123

Matrix Representation of 2D Transformation

